
Anisotropic Goal-Oriented Mesh Adaptation
for Time Dependent Problems

F. Alauzet1, A. Belme2, and A. Dervieux2

1 INRIA Roquencourt, Domaine de Voluceau, 78150 Rocquencourt, France
Frederic.Alauzet@inria.fr

2 INRIA Sophia Antipolis, 2004 route de Lucioles, 06902 Sophia-Antipolis, France
Anca.Belme@inria.fr Alain Dervieux@inria.fr

Summary. We present a new algorithm for combining an anisotropic goal-oriented
error estimate with the mesh adaptation fixed point method for unsteady problems.
The minimization of the error on a functional provides both the density and the
anisotropy (stretching) of the optimal mesh. They are expressed in terms of state
and adjoint. This method is used for specifying the mesh for a time sub-interval.
A global fixed point iterates the re-evaluation of meshes and states over the whole
time interval until convergence of the space-time mesh. Applications to unsteady
blast-wave are presented.

Key words: Unsteady compressible flow, goal-oriented mesh adaptation, anisotropic
mesh adaptation, adjoint, metric

Introduction

Engineering problems frequently require computational fluid dynamics (CFD) so-
lutions with functional outputs of specified accuracy. The computational resources
available for these solutions are often limited and errors in solutions and outputs
are difficult to control. CFD solutions may be computed with an unnecessarily large
number of mesh vertices (and associated high cost) to ensure that the outputs are
computed within a required accuracy.

One of the powerful methods for increasing the accuracy and reducing the com-
putational cost is mesh adaptation, the purpose of which is to control the accuracy of
the numerical solution by changing the discretization of the computational domain
according to mesh size and mesh directions constraints.

Pioneering works have shown a fertile development of Hessian-based or metric-
based methods [12, 9] which rely on an ideal representation of the interpolation error
and of the mesh. The “multiscale” version relies on the optimization of the Lp norm
of the interpolation error [14]. It allows to take into account the discontinuities with
higher-order convergence [18]. However, these methods are limited to the minimiza-
tion of some interpolation errors for some solution fields, the “sensors”, and do not
take into account the PDE being solved. If for many applications, this simplifying

2 F. Alauzet, A. Belme, and A. Dervieux

standpoint is an advantage, there are also many applications where Hessian-based
mesh adaptation is far from optimal regarding the way the degrees of freedom are
distributed in the computational domain.

On the other side, goal-oriented mesh adaptation focuses on deriving the best
mesh to observe a given output functional. Goal-oriented methods result from a
series of papers dealing with a posteriori estimates (see e.g. [20, 6, 11, 21]). Ex-
tracting informations concerning mesh anisotropy from an a posteriori estimate is
a difficult task. Starting from a priori estimates, Loseille et al. proposed in [17] a
fully anisotropic goal-oriented mesh adaptation technique for steady problems. This
latter method combines goal-oriented rationale and the application of Hessian-based
analysis to truncation error.

Mesh adaptation for unsteady flows is also an active field of research and brings
an attracting increase in simulation efficiency. Complexity of the algorithms is larger
than for steady case: for most flows, the mesh should change during the time interval.
Meshes can be moved [5], pattern-split [7, 13], locally refined [4], or globally rebuild
[1]. Hessian-based methods are essentially applied with a non-moving mesh system.
A mesh adaptation fixed-point method was proposed in [1]. The Hessian criteria at
the different time steps of a sub-interval are synthetized into a single criterion for
these steps with the metric intersection [1]. A mesh-PDE solver iteration is applied
on time sub-intervals. Extension to Lp error estimator has been proposed in [4].

The objective of this paper is the extension of goal-oriented anisotropic mesh
adaptation method of [17] to the unsteady framework introduced in [1].

To this end, several methodological issues need to be addressed. First, similarly
to [4], we propose a global fixed-point algorithm for solving the coupled system
made, this time of three fields, the unsteady state, the unsteady adjoint state and
the adapted meshes. Second, this algorithm needs to be a priori analyzed and its con-
vergence rate to continuous solution needs to be optimized. Third, at the computer
algorithmic level, it is also necessary to master the computational (memory and
time) cost of the new system, which couples a time-forward state, a time-backward
adjoint and a mesh update influenced by global statistics.

We start this paper with a formal description of the error analysis in its most
general expression, then the application to unsteady compressible Euler flows is
presented. In Section 3, we introduce the optimal adjoint-based metric definition and
all its relative issues, then in Section 4 we present our mesh adaptation algorithm.
We end this paper with numerical experiments for blast wave problems.

1 Formal Error Analysis

Let us introduce a system of PDE’s in its variational formulation:

Find w ∈ V such that ∀ϕ ∈ V, (Ψ(w) , ϕ) = 0 (1)

with V a functional space of solutions. The associated discrete variational formula-
tion then writes:

Find wh ∈ Vh such that ∀ϕh ∈ Vh, (Ψh(wh) , ϕh) = 0 (2)

Unsteady Goal-Oriented Mesh Adaptation 3

where Vh is a subspace of V. For a solution w of state system (1), we define a
functional output as:

j ∈ R ; j = (g, w), (3)

where (g, w) holds for the following rather general functional output formulation:

(g, w) =

Z T

0

Z
Ω

(gΩ , w) dΩ dt +

Z
Ω

(gT , w(T)) dΩ +

Z T

0

Z
Γ

(gΓ , w) dΓ dt,(4)

where gΩ , gT , and gΓ are assumed to be regular enough functions. We introduce the
continuous adjoint w∗, solution of the following system:

w∗ ∈ V , ∀ψ ∈ V ,
„
∂Ψ

∂w
(w)ψ,w∗

«
= (g, ψ) . (5)

The objective here is to estimate the following approximation error committed
on the functional:

δj = j(w)− j(wh) ,

where w and wh are respectively solutions of (1) and (2). It is then useful to choose
the test function ϕh as the discrete adjoint state, ϕh = w∗h, which is the solution of:

∀ψh ∈ Vh,
„
∂Ψh
∂wh

(wh)ψh , w
∗
h

«
= (g, ψh). (6)

We assume that w∗h is close to the continuous adjoint state w∗. We refer to [17] in
which the following a priori formal estimate is finally proposed:

δj ≈ ((Ψh − Ψ)(w), w∗) . (7)

The next section is devoted to the application of Estimator (7) to the unsteady
Euler model.

2 Unsteady Euler Models

2.1 Continuous state system and Finite Volume formulation

Continuous state system. The 3D unsteady compressible Euler equations are set
in the computational space-time domain Q = Ω × [0, T], where T is the (positive)
maximal time and Ω ⊂ R3 is the spatial domain. An essential ingredient of our dis-
cretisation and of our analysis is the elementwise linear interpolation operator. In or-
der to use it easily, we define our working functional space as V =

ˆ
H1(Ω) ∩ C(Ω̄)

˜5
,

that is the set of measurable functions that are continuous with square integrable
gradient. We formulate the Euler model in a compact variational formulation in the
functional space V = H1{[0, T];V } as follows:

Find W ∈ V such that ∀ϕ ∈ V, (Ψ(W) , ϕ) = 0

with (Ψ(W) , ϕ) =

Z
Ω

ϕ(0)(W0 −W (0)) dΩ +

Z T

0

Z
Ω

ϕWt dΩ dt

+

Z T

0

Z
Ω

ϕ∇ · F(W) dΩ dt −
Z T

0

Z
Γ

ϕ F̂(W).n dΓ dt . (8)

4 F. Alauzet, A. Belme, and A. Dervieux

In the above definition, W is the vector of conservative flow variables and F(W) =
(F1(W),F2(W),F3(W)) is the usual Euler fluxes given by:

W =

0@ ρ
ρ ui
ρ e

1A and Fj(W) =

0@ ρ uj
ρ uj ui + p δij

(ρ e+ p)uj

1A with i = {1, 2, 3} ,

where ρ, ui, p and e denote respectively the fluid density, ith component of the Carte-
sian velocity, pressure and total energy. δij is the Kronecker delta function. Here,
functions ϕ and W have 5 components, and therefore the product ϕW holds forP
k=1..5 ϕkWk. We have denoted by Γ the boundary of the computational domain

Ω, n is the outward normal to Γ , W (0)(x) = W (x, t)|t=0 for any x in Ω, W0 the
initial condition and the boundary flux F̂ contains the different boundary conditions.

Discrete state system. As a spatially semi-discrete model, we consider the Mixed-
Element-Volume formulation [8]. As in [17], we reformulate it under the form of a
finite element variational formulation, this time in the unsteady context. We assume
that Ω is covered by a finite-element partition in simplicial elements denoted K.
The mesh, denoted by H is the set of the elements. Let us introduce the following
approximation space:

Vh =
n
ϕh ∈ V

˛̨
ϕh|K is affine ∀K ∈ H

o
, and Vh = H1{[0, T];Vh} ⊂ V.

Let Πh be the usual P1 projector:

Πh : V → Vh such that Πhϕ(xi) = ϕ(xi), ∀ xi vertex of H.

We extend it to time-dependent functions:

Πh : H1{[0, T];V } → Vh such that (Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0, T].

The weak discrete formulation writes:

Find Wh ∈ Vh such that ∀ϕh ∈ Vh, (Ψh(Wh) , ϕh) = 0,

with: (Ψh(Wh) , ϕ) =

Z
Ω

ϕ(0)(ΠhWh(0)−W0h) dΩ +

Z T

0

Z
Ω

ϕ ΠhWh,t dΩ dt

+

Z T

0

Z
Ω

ϕ∇ · Fh(Wh) dΩ dt−
Z T

0

Z
Γ

ϕF̂h(Wh).n dΓ dt+

Z T

0

Z
Ω

ϕDh(Wh) dΩ dt

with Fh = ΠhF and F̂h = ΠhF̂ . The Dh term accounts for the numerical diffusion.
In the present study, we only need to know that for smooth fields, the Dh term is
a third order term with respect to the mesh size. For shocked fields, monotonicity
limiters become first-order terms.

2.2 Continuous Adjoint system and discretization

Continuous adjoint system. We refer here to the continuous adjoint system in-
troduced previously:

W ∗ ∈ V , ∀ψ ∈ V :

„
∂Ψ

∂W
(W)ψ,W ∗

«
− (g, ψ) = 0. (9)

Unsteady Goal-Oriented Mesh Adaptation 5

We recall that (g, ψ) is defined by (4). Replacing Ψ(W) by its Formulation (8) and
integrating by parts, we get:„

∂Ψ

∂W
(W)ψ,W ∗

«
=

Z
Ω

(ψ(0)W ∗(0)− ψ(T)W ∗(T)) dΩ

+

Z T

0

Z
Ω

ψ

„
−W ∗t −

„
∂F
∂W

«∗
∇W ∗

«
dΩ dt

+

Z T

0

Z
Γ

ψ

"„
∂F
∂W

«∗
W ∗.n +

∂F̂
∂W

!∗
W ∗.n

#
dΓ dt . (10)

The adjoint Euler equations is a system of advection equations, where the temporal
integration goes backwards, i.e., in the opposite direction of usual time. Thus, when
solving the unsteady adjoint system, one starts at the end of the flow run and
progresses back until reaching the start time.

Discrete Adjoint System. Although any consistent approximation of the contin-
uous adjoint system could be built, we choose to build the adjoint of the discrete
state defined in (9) in order to be closer to the true error from which the continu-
ous model were derived. Consider the following semi-discrete unsteady compressible
Euler model (explicit RK1 time integration):

Ψnh (Wn
h ,W

n−1
h) =

Wn
h −Wn−1

h

δtn
+ Φh(Wn−1

h) = 0 for n = 1, ..., N. (11)

The time-dependent functional is discretised as follows:

j(Wh) =

NX
n=1

δtnjn−1(Wh).

The problem of minimizing the error committed on the target functional j(Wh) =
(g,Wh), subject to the Euler system (11), can be transformed into an unconstrained
problem for the following Lagrangian functional:

L =

NX
n=1

δtnjn−1(Wh)−
NX
n=1

δtn(W ∗,nh)TΨnh (Wn
h ,W

n−1
h)

where W ∗,nh are the N vectors of the Lagrange multipliers (which are the time-
dependent adjoint states). The conditions for an extremum becomes then:

∂L
∂W ∗,nh

= 0 and
∂L
∂Wn

h

= 0, for n = 1, ..., N.

The first condition is clearly verified from relation (11). Thus the Lagrangian mul-
tipliers W ∗,nh must be chosen such that the second condition of extrema ∂L

∂Wn
h

= 0

is verified. This gives the unsteady discrete adjoint system:8<:
W ∗,Nh = 0

W ∗,n−1
h = W ∗,nh + δtn

∂jn−1

∂Wn−1
h

− δtn(W ∗,nh)T
∂Ψn−1

h

∂Wn−1
h

(12)

As the adjoint system runs in reverse time, the first expression in the adjoint sys-
tem (12) is referred to as adjoint ”initialization”. Computing W ∗,n−1

h at time tn−1

6 F. Alauzet, A. Belme, and A. Dervieux

requires the knowledge of state Wn−1
h and adjoint state W ∗,nh . Therefore, the knowl-

edge of all states
˘
Wn−1
h

¯
n=1,N

is needed to compute backward the adjoint state

from time T to 0 which involves large memory storage effort.

Solve adjoint state backward: Ψ∗(W, W ∗) = 0

Solve state foreward: Ψ(W) = 0

This drawback can be reduced by out-of-core storage of checkpoints (as shown in
the picture below), although it implies a recomputing effort of the state W .

Solve state once to get checkpoints Ψ(W) = 0

Ψ∗(W, W ∗) = 0

Ψ(W) = 0

Solve state and backward adjoint state from checkpoints

2.3 Numerical example

The simulation of a blast in a 2D geometry representing a city is performed, see
Figure 1. A blast-like initialization Wblast = (10, 0, 0, 250) in ambient air Wair =
(1, 0, 0, 2.5) is considered in a small region of the computational domain. We perform
a forward/backward computation on a uniform mesh of 22 574 vertices and 44 415
triangles. Output functional of interest j is the quadratic deviation from ambient
pressure on target surface S which is a part of the higher building roof (Figure 1):

j(W) =

Z T

0

Z
S

1

2
(p(t)− pair)2 dS dt.

Figure 2 plots the density isolines of the flow at different times showing several shock
waves traveling throughout the computational domain. Figure 3 depicts the associ-
ated density adjoint state progressing backward in time. The same computational
time is considered for both figures.

The simulation points out the ability of the adjoint to automatically provide the
sensitivity of the flow field on the functional. Indeed, at early time of the simulation
(top left picture), a lot of information is captured by the adjoint, i.e., non-zero
adjoint values. We notice that shock waves which will directly impact are clearly
detected by the adjoint, but also shocks waves reflected by the left building which
will be redirected towards surface S. At the middle of the simulation, the adjoint
neglects waves that are traveling in the direction opposite to S and also waves that
will not impact surface S before final time T since they won’t have an influence on
the cost functional. While getting closer to final time T (bottom right picture), the
adjoint only focuses on the last waves that will impact surface S and ignores the
rest of the flow.

Unsteady Goal-Oriented Mesh Adaptation 7

Fig. 1. Initial blast solution and location of the target surface.

3 Optimal unsteady adjoint-based metric

3.1 Error analysis applied to unsteady Euler model

We replace in Estimation (7) operators Ψ and Ψh by their expressions given by
Relations (8) and (9). In [17], it was observed that even for shocked flows, it is
interesting to neglect the numerical viscosity term. We follow again this option. We
also discard the error committed when imposing the initial condition. And finally,
after integrating by parts, the previous error estimate leads to:

δj ≈
Z T

0

Z
Ω

W ∗
`
W −ΠhW

´
t
dΩ dt −

Z T

0

Z
Ω

∇W ∗
`
F(W)−ΠhF(W)

´
dΩ dt

−
Z T

0

Z
Γ

W ∗
`
F̄(W)−ΠhF̄(W))

´
.n dΓ dt . (13)

with F̄ = F̂ −F . We observe that this estimate of δj is expressed in terms of inter-
polation errors of the Euler fluxes and of the time derivative weighted by continuous
functions W ∗ and ∇W ∗. The integrands in Error Estimation (13) contain positive
and negative parts which can compensate for some particular meshes. In our strat-
egy, we prefer to not rely on these parasitic effects and to slightly over-estimate the
error. To this end, all integrands are bounded by their absolute values. Moreover,
we observe that the third term introduce a dependency of the error with respect to
the boundary surface mesh. In the present paper, we discard this term and refer to
[17] for a discussion of the influence of it. At the end, we get:

(g,Wh−W) ≤
Z T

0

Z
Ω

|W ∗| |
`
W−ΠhW

´
t
| dΩ dt+

Z T

0

Z
Ω

|∇W ∗| |F(W)−ΠhF(W)|dΩ dt .

(14)

3.2 Continuous mesh model

We propose to work in the continuous mesh framework, introduced in [15, 16]. It
allows us to define proper differentiable optimization, i.e., to use a calculus of vari-
ations which cannot apply on the class of discrete meshes. This framework lies in
the class of metric-based methods.

8 F. Alauzet, A. Belme, and A. Dervieux

Fig. 2. 2D city blast solution state evolution. From left to right and top to bottom,
snapshot of the density isolines at a-dimensional time 1.2, 2.25, 3.3 and 4.35.

Fig. 3. 2D city blast adjoint state evolution. From left to right and top to bottom,
snapshot of the density isolines at a-dimensional time 0.15, 1.2, 2.25 and 3.3.

Unsteady Goal-Oriented Mesh Adaptation 9

A continuous mesh M of computational domain Ω is identified to a Riemannian
metric field M = (M(x))x∈Ω . For all x of Ω, M(x) is a symmetric tensor hav-
ing (λi(x))i=1,3 as eigenvalues along the principal directions R(x) = (vi(x))i=1,3.

Sizes along these directions are denoted (hi(x))i=1,3 = (λ
− 1

2
i (x))i=1,3 and the three

anisotropic quotients ri are defined by: ri = h3
i (h1h2h3)−1. The node density d

is equal to: d = (h1h2h3)−1 = (λ1λ2λ3)
1
2 =

p
det(M). By integrating the node

density, we define the complexity C of a continuous mesh which is the continuous
counterpart of the total number of vertices:

C(M) =

Z
Ω

d(x) dx =

Z
Ω

p
det(M(x)) dx.

Given a continuous mesh M, we shall say, following [15, 16], that a discrete mesh
H of the same domain Ω is a unit mesh with respect to M, if each tetrahedron
K ∈ H, defined by its list of edges (ei)i=1...6, verifies:

∀i ∈ [1, 6], `M(ei) ∈
»

1√
2
,
√

2

–
and QM(K) ∈ [α, 1] with α > 0 ,

where the length and quality in the metric are defined similarly to [15, 16].
We want to emphasize that the set of all the discrete meshes that are unit meshes

with respect to a unique M contains an infinite number of meshes. Given a smooth
function u, to each unit mesh H corresponds a local interpolation error |u − Πu|.
In [15, 16], it is shown that all these interpolation errors are well represented by the
so-called continuous interpolation error related to M, which is expressed locally in
terms of the Hessian Hu of u as follows:

(u− πMu)(x, t) =
1

10
trace(M−

1
2 (x) |Hu(x, t)|M−

1
2 (x)) . (15)

3.3 Continuous error model

Working in this framework enables us to write Estimate (14) in a continuous form:

|(g,Wh −W)| ≈ E(M) =

Z T

0

Z
Ω

|W ∗| |
`
W − πMW

´
t
| dΩ dt

+

Z T

0

Z
Ω

|∇W ∗| |F(W)− πMF(W)|dΩ dt , (16)

where M = (M(x))x∈Ω is a continuous mesh and πM is the continuous linear
interpolate. Then, introducing the continuous interpolation error, we can write the
simplified error model as follows:

E(M) =

Z T

0

Z
Ω

trace
“
M−

1
2 (x, t) H(x, t)M−

1
2 (x, t)

”
dΩ dt

with H(x, t) =

5X
j=1

([∆t]j(x, t) + [∆x]j(x, t) + [∆y]j(x, t) + [∆z]j(x, t)) , (17)

in which [∆t]j =
˛̨
W ∗j
˛̨
·
˛̨
H(Wj,t)

˛̨
, [∆x]j =

˛̨̨̨
∂W ∗j
∂x

˛̨̨̨
·
˛̨
H(F1(Wj))

˛̨
,

[∆y]j =

˛̨̨̨
∂W ∗j
∂y

˛̨̨̨
·
˛̨
H(F2(Wj))

˛̨
, [∆z]j =

˛̨̨̨
∂W ∗j
∂z

˛̨̨̨
·
˛̨
H(F3(Wj))

˛̨
.

10 F. Alauzet, A. Belme, and A. Dervieux

Here, W ∗j denotes the jth component of the adjoint vector W ∗, H(Fi(Wj)) the
Hessian of the jth component of the vector Fi(W), and H(Wj,t) the Hessian of the
jth component of the time derivative of W . The mesh optimization problem writes:

Find Mopt = ArgminM E(M) under the constraint Cst(M) = Nst, (18)

where Nst is a specified total number of nodes. Since we consider an unsteady
problem, the space-time (st) complexity used to compute the solution takes into
account the time discretization:

Cst(M) =

Z T

0

τ(t)−1

„Z
Ω

dM(x, t)dx

«
dt (19)

where τ(t) is the time step used at time t of interval [0, T].

3.4 Spatial minimization for a fixed t

Let us assume that at time t, we seek for the optimal continuous mesh Mgo(t) which
minimizes the instantaneous error, i.e., the spatial error for a fixed time t:

Ẽ(M(t)) =

Z
Ω

trace
“
M−

1
2 (x, t) H(x, t)M−

1
2 (x, t)

”
dx

under the constraint that the number of vertices is prescribed to

C(M(t)) =

Z
Ω

dM(t)(x, t) dx = N(t). (20)

Similarly to [17], solving the optimality conditions provides the optimal goal-oriented
instantaneous continuous mesh Mgo(t) = (Mgo(x, t))x∈Ω at time t defined by:

Mgo(x, t) = N(t)
2
3 Mgo,1(x, t) , (21)

where Mgo,1 is the optimum for C(M(t)) = 1:

Mgo,1(x, t) = K(t)−
2
5 (det H(x, t))−

1
5 H(x, t). (22)

with K(t) =

„Z
Ω

(det H(x, t))
1
5 dx

« 5
3

. The corresponding optimal instantaneous

error at time t writes:

Ẽ(Mgo(t)) = 3N(t)−
2
3

„Z
Ω

(det H(x, t))
1
5 dx

« 5
3

= 3N(t)−
2
3 K(t) .

3.5 Temporal minimization

To complete the resolution of optimization Problem (18), we perform a temporal
minimization in order to get the optimal space-time continuous mesh. In other words,
we need to find the optimal time law t→ N(t) for the instantaneous mesh size. Here,
we only consider the simpler case where the time step τ is specified by the user as
a function of time t→ τ(t). A similar analysis can be done to deal with the case of
an explicit time advancing solver subject to Courant time step condition, but such
an analysis is out of the scope of this proceeding.

Unsteady Goal-Oriented Mesh Adaptation 11

Let us consider the case where the time step τ is specified by a function of time
t→ τ(t). After the spatial optimization, the space-time error writes:

E(Mgo) =

Z T

0

Ẽ(Mgo(t)) dt = 3

Z T

0

N(t)−
2
3 K(t) dt (23)

and we aim at minimizing it under the following space-time complexity constraint:Z T

0

N(t)τ(t)−1 dt = Nst. (24)

In other words, we concentrate on seeking for the optimal distribution of N(t) when
the space-time total number of nodes Nst is prescribed. Let us apply the one-to-one
change of variables:

Ñ(t) = N(t)τ(t)−1 and K̃(t) = τ(t)−
2
3 K(t) .

Then, our temporal optimization problem becomes:

min
M

E(M) =

Z T

0

Ñ(t)−
2
3 K̃(t) dt under constraint

Z T

0

Ñ(t) dt = Nst .

The solution of this problem is given by:

Ñopt(t)
− 5

3 K̃(t) = const ⇒ Nopt(t) = C(Nst) (τ(t)K(t))
3
5

Here, constant C(Nst) can be obtained by introducing the above expression in space-
time complexity Constraint (24), leading to:

C(Nst) =

„Z T

0

τ(t)−
2
5 K(t)

3
5 dt

«−1

Nst ,

which completes the description of the optimal space-time metric for a prescribed
time step. Using Relation (21), the analytic expression of the optimal space-time
goal-oriented metric Mgo writes:

Mgo(x, t) = N
2
3
st

„Z T

0

τ(t)−
2
5K(t)

3
5 dt

«− 2
3

τ(t)
2
5 (det H(x, t))−

1
5 H(x, t) . (25)

We get the following optimal error:

E(Mgo) = 3N
− 2

3
st

„Z T

0

τ(t)−
2
5K(t)

3
5 dt

« 5
3

. (26)

3.6 Space-time minimization for time sub-intervals

The previous analysis provides the optimal size of the adapted meshes for each time
level. Hence, this analysis requires the mesh to be adapted at each flow solver time
step. But, in practice this approach involves a very large number of remeshing which
is CPU consuming and spoils solution accuracy due to many solution transfers from
one mesh to a new one. In consequence, a new adaptive strategy has been proposed
in [1, 4] where the number of remeshing is controlled (thus drastically reduced) by

12 F. Alauzet, A. Belme, and A. Dervieux

generating adapted meshes for several solver time steps. The idea is to split the
simulation time interval into nadap sub-intervals [ti, ti+1] for i = 1, .., nadap. Each
spatial mesh Mi is then kept constant during each sub-interval [ti, ti+1]. We could
consider this partition as a time discretization of the mesh adaptation problem.

Spatial minimization on a sub-interval. Given the continuous mesh complexity
Ni for the single adapted mesh used during time sub-interval [ti, ti+1], we seek for
the optimal continuous mesh Mi

go solution of the following problem:

min
Mi

Ei(Mi) =

Z
Ω

trace
“

(Mi)−
1
2 (x) Hi(x) (Mi)−

1
2 (x)

”
dx such that C(Mi) = N i ,

where hessian metric Hi on the sub-interval can be defined by either using an L1 or
an L∞ norm:

Hi
L1(x) =

Z ti+1

ti

H(x, t) dt or Hi
L∞(x) = ∆ti max

t∈[ti,ti+1]
H(x, t) ,

with∆ti = ti+1−ti. Processing as previously, we get the spatial optimality condition:

Mi
go(x) = (N i)

2
3 Mi

go,1(x) with Mi
go,1(x) = (Ki)−

2
5 (det Hi(x))−

1
5 Hi(x).

The corresponding optimal error Ei(Mi
go) writes:

Ei(Mi
go) = 3 (N i)−

2
3

„Z
Ω

(det Hi(x))
1
5 dx

« 5
3

= 3 (N i)−
2
3 Ki .

Temporal minimization for specified τ . To complete our analysis, we shall
now perform a temporal minimization. After the spatial minimization, the temporal
optimization problem reads:

min
M

E(M) = 3

nadapX
i=1

(N i)−
2
3 Ki such that

nadapX
i=1

N i

„Z ti+1

ti

τ(t)−1dt

«
= Nst .

We set the one-to-one mapping:

Ñ i = N i

„Z ti+1

ti

τ(t)−1dt

«
and K̃i = Ki

„Z ti+1

ti

τ(t)−1dt

« 2
3

,

then the optimization problem reduces to:

min
M

nadapX
i=1

(Ñ i)−
2
3 K̃i such that

nadapX
i=1

Ñ i = Nst .

We deduce the optimal continuous mesh Mgo = {Mi
go}i=1,..,nadap and error:

Mi
go(x) = N

2
3
st

 nadapX
i=1

(Ki)
3
5 T i

!− 2
3

(T i)−1(det Hi(x))−
1
5 Hi(x)

E(M) = 3N
− 2

3
st

 nadapX
i=1

(Ki)
3
5 T i

! 5
3

,

with (Ki)
3
5 =

Z
Ω

(det Hi(x))
1
5 dx and T i =

„Z ti+1

ti

τ(t)−1dt

« 2
5

.

Unsteady Goal-Oriented Mesh Adaptation 13

4 From theory to practice

In order to remedy all the problematics relative to mesh adaptation for time-
dependent simulations stated in the introduction, an innovative strategy based on
a fixed-point algorithm has been initiated in [2] and fully developed in [1]. The
fixed-point algorithm aims at avoiding the generation of a new mesh at each solver
iteration which would imply serious degradation of the CPU time and of the solution
accuracy due to the large number of mesh modifications. It is also an answer to the
lag problem occurring when computing the solution at tn and accordingly adapt the
mesh at each time step. Indeed, by doing this, the mesh is always late as compared
to the solution as it is not adapted for the displacement of the solution between tn

and tn+1.
The basic idea consists in splitting the simulation time frame [0, T] into nadap

adaptation sub-intervals:

[0, T] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap] ,

and to keep the same adapted mesh for each sub-interval. On each sub-interval, the
mesh is adapted to control the solution accuracy from tn to tn+1. Consequently,
the time-dependent simulation is performed with nadap different adapted meshes.
This can be seen as a coarse discretization of the time axis where the spatial mesh
is constant for each sub-interval when the global space-time mesh is visualized,
providing thus a first step in the adaptation of the whole space-time mesh.

4.1 Choice of the goal-oriented metric

The optimal adapted meshes for each sub-interval are generated according to anal-
ysis of Section 3.6. In this work, the following particular choice has been made:

• the hessian metric for sub-interval i is based on a control of the temporal error
in L∞ norm:

Hi
L∞(x) = ∆ti max

t∈[ti,ti+1]
H(x, t) = ∆ti H

i
max(x) ,

• function τ : t→ τ(t) is constant and equal to 1,
• all sub-intervals have the same time length ∆t.

The optimal goal-oriented metric Mgo = {Mi
go}i=1,..,nadap then simplifies to:

Mi
go(x) = N

2
3
st

 nadapX
i=1

(

Z
Ω

(det Hi
max(x))

1
5 dx)

!− 2
3

(∆t)
1
3

“
det Hi

max(x)
”− 1

5
Hi

max(x) .

Remark: We notice that we obtain a similar expression of the optimal metric as
the one proposed in [4], but here in the goal-oriented context and by means of a
space-time error minimization.

14 F. Alauzet, A. Belme, and A. Dervieux

4.2 Global fixed-point mesh adaptation algorithm

To converge the non-linear mesh adaptation problem, i.e., converging the couple
mesh-solution, we propose a fixed-point mesh adaptation algorithm. This is also a
way to predict the solution evolution and to adapt the mesh accordingly. Neverthe-
less, to compute all metrics fields Mi

go, we have to evaluate the global normalization
term which requires the knowledge of all Hi

max. Thus, all the simulation must be
performed to be able to evaluate all metrics Mi

go. Similarly to [4], a global fixed
point strategy covering the whole time-frame [0, T], called Global adjoint fixed-point
mesh adaptation algorithm, is considered:

//--- Fixed-point loop to converge the global space-time mesh adaptation

For j=1,nptfx

//--- Solve state once to get checkpoints

For i=1,nadap
• Sj0,i = ConservativeSolutionTransfer(Hji−1,S

j
i−1,H

j
i)

• Sji = SolveStateForward(Sj0,i,H
j
i)

End for

//--- Solve state and adjoint backward and store samples

For i=nadap,1

• (S∗)ji = AdjointStateTransfer(Hji+1, (S
∗
0)ji+1,H

j
i)

• {Sji (k), (S∗)ji (k)}k=1,nk = SolveStateAndAdjointBackward(Sj0,i, (S
∗)ji ,H

j
i)

• (Hmax)ji = ComputeGoalOrientedHessianMetric(Hji , {S
j
i (k), (S∗)ji (k)}k=1,nk)

End for

• Cj = ComputeSpaceTimeComplexity({(Hmax)ji}i=1,nadap)

• {Mj
i}i=1,nadap = ComputeUnsteadyGoalOrientedMetrics(Cj , {|Hmax|ji}i=1,nadap)

• {Hj+1
i }i=1,nadap = GenerateAdaptedMeshes({Hji}i=1,nadap , {M

j
i}i=1,nadap)

End for

5 Numerical examples

The procedures described in this paper have been implemented in our Finite Ele-
ment/Finite Volume CFD code Wolf which is thoroughly detailed in [3]. As regards
the meshing part, we consider a local remeshing strategy. We use Yams [10] for the
adaptation in 2D and Feflo.a [19] in 3D.

2D Blast wave propagation. We first apply the goal-oriented adaptive strategy
to the example presented in Section 2.3. It consists in a 2D blast in a geometry
representing a city. We recall that the cost function of interest j is the quadratic
deviation of the pressure ambient pressure on target surface S (see Figure 1):

j(W) =

Z T

0

Z
S

1

2
(p(t)− pair)2dSdt.

The simulation time frame is split into 30 time sub-intervals, i.e., 30 different
adapted meshes are used to perform the simulation. Hence, 30 checkpoints are stored
for the backward computation of the unsteady adjoint.

The resulting adjoint-based anisotropic adapted meshes are shown in Figure 4.
The corresponding density isolines are depicted in Figure 5. These adapted meshes

Unsteady Goal-Oriented Mesh Adaptation 15

Fig. 4. 2D city blast adjoint-based adapted meshes evolution. From top to bot-
tom and left to right, meshes corresponding to sub-intervals 8, 15, 22 and 29 at
a-dimensional time 1.2, 2.25, 3.3 and 4.35.

Fig. 5. 2D city blast adaptive solution state evolution. From top to bottom and
left to right, density iso-lines corresponding to the end of sub-intervals 8, 15, 22 and
29 at a-dimensional time 1.2, 2.25, 3.3 and 4.35.

16 F. Alauzet, A. Belme, and A. Dervieux

indubitably illustrate that, thanks to the unsteady adjoint, the mesh adaptation
only focuses on shock waves that impact the observation region and ignores other
area of the flow field. Therefore, waves traveling toward the observation are accu-
rately captured whereas the rest of the flow is poorly computed. We also observe
that once waves go beyond the target surface, the mesh is no more refined even if
they continue traveling throughout the computational domain. Indeed, they do not
impact anymore the functional.

It is then quite interesting to compare the Hessian-based approach of [4] with
our adjoint-based method. This comparison is shown in Figure 6. It demonstrates
how the adjoint defines an optimal distribution of the degrees of freedom for the
specific functional, while it is clear that in this context the Hessian-based approach
gives a non-optimal result for the evaluation of the functional but capture accurately
the whole flow.

In conclusion, if an output functional of interest is provided then the reduction
of the simulation number of degrees of freedom can be even more improved by
considering a goal-oriented analysis instead of an Hessian-based methodology.

Fig. 6. Adapted mesh and corresponding density iso-lines for sub-interval 15 at
a-dimensional time 2.25 obtained with the Hessian-based method of [4].

3D Blast wave propagation. Finally, we consider exactly the same blast test
case but in a 3D city geometry. Cost function j is again the quadratic deviation
from ambient pressure on target surface Γ which is composed of one building for
simulation 1 or two buildings for simulation 2, see Figure 7. The simulation time
frame is split into 40 time sub-intervals, i.e., 40 different adapted meshes are used
to perform the simulation.

The resulting adjoint-based anisotropic adapted meshes (surface and volume)
for both simulations at sub-interval 10, 15 and 20 are shown in Figures 8 and 9.
It is very interesting to see that we are not restricted to just one target surface.
As previously in 2D, we notice that mesh refinement only focuses on shock waves
that will impact the target buildings. Other waves are neglected thus leading to a
large reduction of the mesh size. To illustrate this point, we provide meshes size
for several sub-intervals for simulation 2: for sub-intervals 1, 5, 10 and 20 the mesh
number of vertices is respectively 1 051 805, 678 802, 233 116 and 45 500. The mesh
size has been reduced by a factor 20 between the first and the twentieth sub-interval.

Unsteady Goal-Oriented Mesh Adaptation 17

The observation Γ is this building
The observation Γ are these 2 buildings

Fig. 7. 3D City test case geometry and location of target surface Γ composed of
one building for simulation 1 (left) or two buildings for simulation 2 (right).

6 CONCLUSIONS

We have designed a new mesh adaptation algorithm which prescribes the spatial
mesh of an unsteady simulation as the optimum of a goal-oriented error analysis.
This method specifies both mesh density and mesh anisotropy by variational calcu-
lus. Accounting for unsteadiness is applied in a time-implicit mesh-solution coupling
which needs a non-linear iteration, the fixed point. In contrast to the Hessian-based
fixed-point of [1] which iterates on each sub-interval, the new iteration covers the
whole time interval, including forward steps for evaluating the state and backward
ones for the adjoint. This algorithm was applied to 2D and 3D blast wave Euler
test cases. Numerical results demonstrate the favorable behavior expected from an
adjoint-based method, which gives an automatic selection of the mesh necessary for
the target output.

Several important issues remain to be addressed. Among them, the strategies
for choosing the splitting in time sub-intervals and the accurate integration of time
errors in the mesh adaptation process with a more general formulation of the mesh
optimization problem is examined seriously in [4].

Time discretization error is not considered in this study. Solving this question
is not so important for the type of calculation that are shown in this paper, but
can be of paramount impact in many other cases, in particular when implicit time
advancing is used. The additional effort in time-error reduction has to be integrated
in the convergence analysis sketched in this paper, and the authors plan to propose
this global analysis in some future.

References

1. F. Alauzet, P.J. Frey, P.L. George, and B. Mohammadi. 3D transient fixed point
mesh adaptation for time-dependent problems: Application to CFD simulations.
J. Comp. Phys., 222:592–623, 2007.

2. F. Alauzet, P.L. George, B. Mohammadi, P.J. Frey, and H. Borouchaki. Tran-
sient fixed point based unstructured mesh adaptation. Int. J. Numer. Meth.
Fluids, 43(6-7):729–745, 2003.

18 F. Alauzet, A. Belme, and A. Dervieux

3. F. Alauzet and A. Loseille. High order sonic boom modeling by adaptive meth-
ods. J. Comp. Phys., 229:561–593, 2010.

4. F. Alauzet and G. Olivier. Extension of metric-based anisotropic mesh adapta-
tion to time-dependent problems involving moving geometries. In 49th AIAA
Aerospace Sciences Meeting and Exhibit, AIAA-2011-0896, Orlando, FL, USA,
Jan 2011.

5. M.J. Baines. Moving finite elements. Oxford University Press, Inc., New York,
NY, 1994.

6. R. Becker and R. Rannacher. A feed-back approach to error control in finite
element methods: basic analysis and examples. East-West J. Numer. Math.,
4:237–264, 1996.

7. M. Berger and P. Colella P. Local adaptive mesh refinement for shock hydro-
dynamics. J. Comp. Phys., 82(1):67–84, 1989.

8. P.-H. Cournède, B. Koobus, and A. Dervieux. Positivity statements for a Mixed-
Element-Volume scheme on fixed and moving grids. European Journal of Com-
putational Mechanics, 15(7-8):767–798, 2006.

9. J. Dompierre, M.G. Vallet, M. Fortin, Y. Bourgault, and W.G. Habashi.
Anisotropic mesh adaptation: towards a solver and user independent CFD. In
AIAA 35th Aerospace Sciences Meeting and Exhibit, AIAA-1997-0861, Reno,
NV, USA, Jan 1997.

10. P.J. Frey. Yams, a fully automatic adaptive isotropic surface remeshing proce-
dure. RT-0252, INRIA, November 2001.

11. M.B. Giles and E. Suli. Adjoint methods for PDEs: a posteriori error analysis
and postprocessing by duality, pages 145–236. Cambridge University Press, 2002.

12. F. Hecht and B. Mohammadi. Mesh adaptation by metric control for multi-scale
phenomena and turbulence. AIAA Paper, 97-0859, 1997.

13. R. Löhner. Adaptive remeshing for transient problems. Comput. Methods Appl.
Mech. Engrg., 75:195–214, 1989.

14. A. Loseille and F. Alauzet. Optimal 3D highly anisotropic mesh adaptation
based on the continuous mesh framework. In Proceedings of the 18th Interna-
tional Meshing Roundtable, pages 575–594. Springer, 2009.

15. A. Loseille and F. Alauzet. Continuous mesh framework. Part I: well-posed
continuous interpolation error. SIAM J. Numer. Anal., 49(1):38–60, 2011.

16. A. Loseille and F. Alauzet. Continuous mesh framework. Part II: validations
and applications. SIAM J. Numer. Anal., 49(1):61–86, 2011.

17. A. Loseille, A. Dervieux, and F. Alauzet. Fully anisotropic goal-oriented mesh
adaptation for 3D steady Euler equations. J. Comp. Phys., 229:2866–2897, 2010.

18. A. Loseille, A. Dervieux, P.J. Frey, and F. Alauzet. Achievement of global
second-order mesh convergence for discontinuous flows with adapted unstruc-
tured meshes. In 37th AIAA Fluid Dynamics Conference and Exhibit, AIAA-
2007-4186, Miami, FL, USA, Jun 2007.

19. A. Loseille and R. Löhner. Adaptive anisotropic simulations in aerodynamics. In
48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2010-169, Orlando,
FL, USA, Jan 2010.

20. R. Verfürth. A review of A Posteriori Error Estimation and Adaptative Mesh-
Refinement techniques. Wiley Teubner Mathematics, New York, 1996.

21. M. Wintzer, M. Nemec, and M.J. Aftosmis. Adjoint-based adaptive mesh re-
finement for sonic boom prediction. In AIAA 26th Applied Aerodynamics Con-
ference, AIAA-2008-6593, Honolulu, HI, USA, Aug 2008.

Unsteady Goal-Oriented Mesh Adaptation 19

Fig. 8. 3D Blast wave propagation: simulation1. Adjoint-based anisotropic adapted
surface (left) and volume (right) meshes at sub-interval 10, 15 and 20 and corre-
sponding solution density at a-dimensioned time 5, 7.5 and 10.

20 F. Alauzet, A. Belme, and A. Dervieux

Fig. 9. 3D Blast wave propagation: simulation2. Adjoint-based anisotropic adapted
surface (left) and volume (right) meshes at sub-interval 10, 15 and 20 and corre-
sponding solution density at a-dimensioned time 5, 7.5 and 10.

